Friday, June 23, 2017

Recap Journeys

In one of my most popular posts, I compared some key features of Recap and Flipgrid, two great tools that use video to capture student thinking. Last week I had the great fortune to talk a bit with Brian Lamb, co-founder of Recap, about some of the innovative things happening at Recap. The one that I was most excited to learn about are Recap Journeys.

The foundation of Recap Journeys is student curiosity. Pose a problem. Show a scenario. Do a demo. What do students notice? What do students wonder? Use the questions of the students to drive the learning of the lesson. The Recap Journey begins with a 60-second video that quickly introduces a topic. Students can use Recap to share their noticing and wondering, their predictions and estimations, their ideas and hypotheses. When building a Journey, teachers can curate a small set of resources that students can use to explore the topic. The student ideas can then become the focus of the lesson.

As a long time lover of scientific inquiry and a new admirer of modeling instruction, this focus on curiosity at Recap has captured my interest. When I introduce a new topic, I sometimes show a quick demo to get students thinking about what we will learn. That could become a Journey. Using Recap Journeys, I can easily adapt many of the inquiry labs I already do to collect student thinking along the way. Love three-act math tasks? Those are made for Recap Journeys. If you like the approach of modeling instruction, that aligns perfectly with what a Journey will accomplish.

What makes Recap Journeys so perfect is how they combine several hot button topics. Technology can be integrated in ways that heighten learning or squander that opportunity. Recap has created a great tool; now they are modeling ways that it can maximize engagement and learning. Much has been written about how traditional school can drum the creativity right out of a student. Along come Recap Journeys to shine the light back on curiosity. We know that students learn more when they are engaged; the focus on student-driven questions will increase engagement.

To help teachers get started with Recap Journeys, Recap has created Discover, a platform for sharing great Journeys so that we don't all have to start from scratch. Discover is searchable by subject and grade-level. Teachers can submit Journeys to Discover with some incentives in place to reward hard work. The vision is for Discover to become a YouTube-like resource, entirely focused on student curiosity.

Thursday, June 22, 2017

6 Highlights of my Apple Teacher Training

Last week I posted to my blog that I achieved the Apple Teacher designation and that I picked up a number of handy tips during the process even though I had been using iPads in my classroom for over five years. Here I share my favorite things I learned:


1. Slide Over


OK, in fairness, this one was not really new to me. I learned about Slide Over, the ability to slide over a multi-tasking work panel while in an app (two apps open at once), last year. I admit, though, that I haven't used it much at all. During the Apple Teacher work, I often worked in one app and used the slide over panel to read directions for the projects. Now that I have done that so much, it's becoming part of my work process. I can be browsing with Safari and adding things to my calendar or responding to text messages without closing an app. It feels more productive!


2. Markup Photos


I can't believe that I didn't know that there were markup tools native to the Photos app. Click the Edit icon and then the More icon. Click Markup. You can write on photos, add text, magnify a bit of the photo, draw shapes that will autocorrect to make straight lines. I love it!



3. Interactive Charts


Within the iWork Suite, you can create interactive data charts. When you use data to create a chart, in Pages or Keynote for example, you can choose a 2D or 3D chart like in other programs. You can also now click interactive charts to insert a chart with sliders that you can move and watch data change. It's very slick! Check out this great YouTube video to see more about it from the people at lynda.com.


4. Keynote Live


You can use Keynote Live to play a presentation over the internet so viewers can see it beyond the room where you are presenting. This concept isn't new to me. I use Nearpod for this all the time. Still, I didn't know you can do it with Keynote and just a few clicks. Presentations can be "joined" with or without a password by 35 people on a local wi-fi network or 100 people around the globe. How cool is that?!


5. Magic Move


And speaking of Keynote, there is a really fun animation feature called Magic Move that allows you to animate an object to move from one position to another during a slide transition. Here is an example I made in fewer than five minutes:



A quick aside: Keynote also just added hundreds of beautifully drawn shapes. I used two of those in the video above.

6. Instant Alpha


Like Slide Over, I think I knew about this one, but haven't used it. Instant Alpha allows you to remove parts of an image by simply dragging a finger across the image. In the example at the right, I used a piece of artwork my daughter created as a background image. Then I took a photo of her with other artwork and used Instant Alpha to remove most of the background so that I could layer her on top of her artwork. Instant Alpha can be used in Keynote and Pages! 

These are just the best 6 things I learned on my way to Apple Teacher. Maybe some of them are new to you, too!

Tuesday, June 13, 2017

An Apple for the Teacher


Last September I signed up for Apple Teacher. Apple Teacher is a free professional development program that offers educators an opportunity for self-paced PD and recognition for what they know and are able to do on an iPad or a Mac. 
It was my goal to earn this distinction by the end of the school year, but I didn't quite make it (until this past week!). One of the reasons that I kept back-burnering this was that I didn't know exactly what to expect. In case, you're in that same boat, let me give you some details.

By earning eight badges, a teacher earns the distinction of Apple Teacher. There are three tracks: iPad, Mac and Swift Playgrounds. The badges are

iPad:  iPad, Pages, Numbers, Keynote, Garage Band, iMovie, Productivity, & Creativity

Mac:  Mac, Pages, Numbers, Keynote, Garage Band, iMovie, Productivity, & Creativity

Swift: Swift Playground App, Coding Concepts, Swift Code, Coding in the Classroom

Once a teacher is signed up, she gains access to the Apple Teacher Learning Center where resources have been collected to help earn the Apple Teacher recognition. The most valuable resources in the collection were the iBook interactive guides. Each guide takes the user through a project using a particular tool. By the time you finish the project, you have learned the key features of the tool. Because I have been a active iPad user for six years, I didn't need to complete several of the projects, but I still read through the guides and learned several new features. I have very little experience with GarageBand or iMovie, so those projects really helped me understand the important elements of those tools. I am inspired to use iMovie more this year!

After you have mastered material, you take a five question quiz. You have to answer four of the five questions correctly to earn the badge. If you don't answer four questions correctly (Grrr, GarageBand), you can take another shot. The quizzes are not timed and you can easily refer to notes while you take them. A couple of times I opened up an app and fiddled around with it for minute to be sure I knew an answer.

The amount of time you spend on this will depend on your proficiency with the content. I spent about 20 minutes reading guides for apps where I felt very confident, but for the apps that were relatively new to me, I spent 45 minutes or so. The quizzes all take 5-10 minutes. I am also a Google Educator and Trainer; those modules and tests were much more difficult and stressful than these Apple Teacher training tools.

So why bother to become an Apple Teacher?
Most of what I know about iPads is what I learned on-the-fly. I appreciated the opportunity to work through some formal lessons at my own pace, discover some tips and tricks that will make me more productive, and explore a couple of apps I have rarely used. If your school is adopting Macs or iPads, I would recommend everyone work through these lessons. The modules emphasize the value of applying the tools to maximize learning! They are fast and fun essentials that will boost skills very quickly. The Apple Teacher credential verifies those skills.

Monday, April 24, 2017

Don't Just Copy & Paste! Store it on the Web Clipboard!

I have just finished teaching equilibrium, so my near daily need for a double arrow is done. Where I can type two dashes and a greater than sign (-->) in a Google doc and get an arrow, a double arrow is harder to come by. To solve my problem I used the Web clipboard

What is the Web clipboard?

The Web clipboard is a place where you can store copied text or images for use in Google docs. It's like your computer's clipboard, where all your control+C or command+C text and images go, except it lives on the Web. Here are a couple of things I love about the Web clipboard compared to Cut, Copy, and Paste:
  • You can copy between computers. Put something on the Web clipboard at work and then access it on your desktop computer at home. Because it's web-based.
  • You can store many images on the Web clipboard at once. Your computer's clipboard can only store your most recent copied or cut text or image. The Web clipboard lets you store several and choose the one you need when you need it.
  • Things stay on the Web clipboard for 30 days. Need a double arrow for the next 30 days while you teach equilibrium? Store it on the web clipboard!

Here's how you use the Web clipboard:

Highlight text or an image that you want to copy. Go to the Edit menu and drag down to Web clipboard. Then select Copy to web clipboard. If you have created a Drawing (like a double arrow to use while you teach equlibrium), go to the Actions menu and drag down to Web clipboard and then Copy entire drawing to web clipboard.



In the document where you want to place your copied item, put your cursor where the copied item belongs. Go to the Edit menu and drag down to Web clipboard. Then hover over the Drawings that are copied until you find the one you want. Click on it and it will be pasted into its location.


With a couple of quick clicks, I can turn this 
into this

Once I create that double arrow and copy it to the Web clipboard, it remains there for the next 30 days, so it is available every time I write a test, lab, or quiz and I need the double arrow. Next year, when it is no longer on the web clipboard, I can just put it there again! If there are things you need over and over - maybe graphic organizers or certain diagrams or phrases or directions - consider trying out the Web clipboard. It is a great time saver!

Wednesday, April 12, 2017

15 Graphic Organizers For Text Structure Work

This week I participated in some great professional development about text structures, led by my colleague, MaryAnn Tatarunas. She explained that student understanding of text will improve when they are directly taught five text structures. Each of the five text structures can be identified by key phrases that are included in the text and they can be better understood by considering certain key questions. 

Here is a quick rundown of the five text structures:
  1. Causation: cause and effect relationships are explored, phrases like "as a result as" and "because of" are often used
  2. Comparison: things are compared or contrasted, phrases like "alike" and "different" and "as opposed to" are often used
  3. Description: information about a topic is presented, words like "characteristics" or "properties" or "qualities" are often used
  4. Problem/Solution: a problem and solution are explored, words like "answer" or "response" or "puzzle" are often used
  5. Sequence: an order of events is presented, words like "before" and "after" and "finally" are often used.
MaryAnn shared sample reading assignments with us for each of the text structures and then showed examples of graphic organizers that could be used with students to help them better understand the text and recognize these text structures.


I was so inspired by the practical tips that MaryAnn shared with us that I created fifteen Google drawing templates of some of these graphic organizers. They are color-coded by text structure. You can access them here. To use them, go to the file menu and select "make a copy" to make your own editable copy of the organizer. Google drawings are under-utilized but I really like them. They can be distributed through Google classroom or with Doctopus so that each student gets his/her own copy for individual work. Also, teachers can add text blocks in the gray space on either side of the drawing canvas to create drag-and-drop experiences because the stuff in the gray space gets shared right along with the drawing on the canvas. 

It's standardized testing season in Ohio. We just wrapped up testing at my school, but at this time of year, we are all reminded about the importance of helping students use all available strategies to be successful on these tests. Certainly teaching students to recognize text structures and apply appropriate graphic organizers will improve reading comprehension, a handy skill to have at test time.

Feel free to copy and share these graphic organizers. I will be adding more to the collection in the coming months.

Wednesday, April 5, 2017

Using Stop Motion Animation to show Reaction Mechanisms

Kinetics is a topic that I love to teach, but my students find it very difficult to understand. There are probably a variety of reasons for this, but one that I think contributes is that students struggle to think at the particle level in chemistry. If it's difficult to think about a sample of matter as being made of indescribably small and invisible particles, it is probably even more difficult to consider or propose the order of collisions that must occur in a successful chemical reaction. That is one of the challenges of teaching reaction mechanisms.

When the reaction     2 NO2 + F2 --> 2 NO2F    takes place, we know the reactants are 2 NO2 and F2. We know the products are 2 NO2F. We don't know, from the balanced equation, which particles must smash into which particles in order to change the reactants into products. We do know, though, that it is statistically unlikely that all three particles must crash into each other at once and instantly form products. Scientists propose a mechanism that outlines the order of the collisions that gets us from reactants to products.

I use a guided inquiry activity to tackle this topic every year. During my small group discussion with kids, I often need to use something to model the collisions that happen between the reactant molecules in the example reactions. Sometimes I use paper circles and sometimes circles I have drawn on the iPad. This year I grabbed small colored plastic cubes because they were handy. As I was talking with a student about the order of molecular collisions, it occurred to me that this would be a great occasion for a stop motion video, especially because, as a GIF, it could be watched over and over again until a student really understood the differences in the order of collisions of the same particles in two different mechanisms. 

I grabbed my iPad and took four quick pictures as the student and I talked through these collisions. Using the Stop Motion app, I created the GIF in fewer than five more minutes. Here it is:



It was very easy and can now be used as a tool to help students see the difference between two mechanisms. Next year I will try to incorporate making stop motion videos into the guided inquiry.

Tuesday, April 4, 2017

Modeling Reaction Kinetics

In my last post, I detailed my takeaways from a powerful workshop I attended on modeling instruction. Since attending that workshop, I find myself thinking more about incorporating the ideals of modeling into my instruction. For years I have created open-ended activities in which students explore and test hypotheses, but questions have remained. How can I make better use of my whiteboards? How can I facilitate more conversations about student experiments?

One of the first topics I applied some of these modeling ideas to was kinetics. Kinetics is one of my favorite topics to teach, so it was a perfect starting point for this new inspiration. For years I have attempted a clock reaction lab in hopes that students could use data to write a rate law. Unfortunately, the results are usually a mix of inconsistent and confusing and rarely lead to even a better understanding of rate laws in general. I have led students through at least four iterations of rate law labs, each year junking that year's plan and vowing to do it better in the future.

Here is what I tried this year: On Day 1 of the Kinetics unit, I demonstrated a clock reaction for my students by mixing a solution of potassium iodate and a solution of sodium hydrogen sulfite. It's a great hook. Then I posed the question "does the concentration of both reactants affect the reaction rate to the same degree?" I sent students into the lab with 10 mL of each reactant and some tips. I asked them to collect at least 10 data points that would support the position they took to answer the question. They completed the experiments in a spot plate, measuring the solutions by drops. Most groups took between 20 and 30 minutes to complete their data collection.




I had ordered whiteboards from The Markerboard People. Each group took a whiteboard and created a graph that showed the concentration of each reactant vs time. Without revealing the whiteboards, I asked each group to summarize their experiments. Most groups conducted similar experiments, so I asked the students to hypothesize whether or not they guessed the data, and the relationship between concentration and rate, should also be similar from group to group. They said yes. Then they revealed their boards. And the data was not the same.

I asked students to talk about their data. What did it tell them? How did they explain why their graphs looked differently? What did they notice about each other's representation of information. The conversation was fantastic. Students used math vocabulary ("It looks exponential" and "This section looks linear but we might have an error that explains that" and "why would you make the scale on the x-axis run backward?") to describe their graphs and identified, without my prompting, errors that might have contributed to poor data.

In the end, they wouldn't have been able to determine a rate law, but I'm not sure that is even what's important here. I kept coming back to the essential question: Do the reactants affect the reaction rate to the same degree? Students seemed almost unanimous that the reactants have different effects on reactant rate. That notion laid exactly the right foundation for the next day's learning about rate laws.